

MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-623					
	part-time studies:	Z-ZIPN1-E-623					
Module name	Engineering model	Engineering modeling					
Module name in Polish	Modelowanie inżyn	Modelowanie inżynierskie					
Valid from academic year	2019/2020	2019/2020					

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	Computer Science for Management and Modelling
Unit conducting the module	Department of Computer Science Technologies
Module co-ordinator	Paweł Stąpór, PhD
Approved by:	

MODULE OVERVIEW

Type of subject / group of subjects	Specialist subject
Module status	Non-compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester VI
Initial requirements	No requirements
Examination (YES/NO)	NO
Number of ECTS credit points	1

Method of c	nod of conducting classes		Classes	Laborato- ry	Project	Other
Per	full-time studies:			15		
semester	part-time studies:			9		

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category			Assignations to the directional learning out- comes
UU1 for modelling selected e		A student is able to use modern numerical analysis tools for modelling selected engineering problems.	ZIP1_U17
Skills	U02	A student is able to apply the rules of modeling with the use of finite element analysis.	ZIP1_U19
Social competences K01		He understands the need and knows the possibilities of continuous improvement, which leads to increasing per- sonal professional competences.	ZIP1_K01

TEACHING CONTENTS

Method of conducting classes	Teaching contents						
Laboratory	Presentation of the FEA (Finite Element Analysis) computing environment for model- ing selected engineering problems. Modeling of stationary and non-stationary heat flows using the FEA program. Static and dynamic 2 and 3-D analysis in FEA. Modeling of contact issues including non-standard material models and large dis- placements in FAE.						

METODS OF ASSESSING TEACHING RESULTS

Symbol		Methods		the learning o	utcomes	
	Oral exam	Written exam	Test	Project	Statement	Other
U01					Х	
U02					Х	
K01						Х

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit Passing conditions					
Laboratory	Credit with grade	Obtaining a positive assessment from the report covering the implementation of the selected issue.				

STUDENT WORKLOAD

Balance of ECTS points												
No.	Type of student's activity		Student's workload								Unit	
NO.	Type of student's activity	full-time				part-time					Unit	
1.	1. Participation in the activities		С	Lb	Ρ	0	Lc	С	Lb	Р	0	h
1.				15					9			
2.	Other (consultation, exam)			2					2			h
3.	Number of hours of a student's as- sisted work		17				h					
4.	Number of ECTS credit points which are allocated for assisted work		0,7			0,4					ECTS	
5.	Number of hours of a student's un- assisted work		8			14					h	
6.	Number of ECTS credit points which a student receives for unassisted work		0,3			0,6				ECTS		
7.	Work input connected with practical classes		25		25					h		
8.	Number of ECTS credit points which a student receives for practical classes	1,0			1,0					ECTS		
9.	Total number of hours of a stu- dent's work	25 25				h						
10.	Punkty ECTS za moduł 1 ECTS=25 hours	1						ECTS				

LITERATURE

- 1. Dassault Systemes Simulia Inc., Abaqus Analysis User's Guide, USA, 2022.
- 2. Ryan Lee, ABAQUS for Engineers: A Practical Tutorial Book, Independently published, 2019.
- 3. Reddy J. N., An Introduction To The Finite Element Method, 4th Edition, McGraw Hill International edition, 2019.
- 4. Terrence J. Akai, *Applied numerical methods for engineers*, John Wiley & Sons, cop., New York 1994.