

MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-403					
	part-time studies:	Z-ZIPN1-E-403	ZIPN1-E-403				
Module name	Strength of Materia	Strength of Materials					
Module name in Polish	Wytrzymałość mate	Wytrzymałość materiałów					
Valid from academic year	2019/2020						

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Dariusz Bojczuk, PhD, DSc
Approved by:	

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester IV
Initial requirements	No requirements
Examination (YES/NO)	YES
Number of ECTS credit points	4

Method of conducting classes		Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	30	20			
semester	part-time studies:	18	12			

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes
	W01	A student has basic knowledge of quantities describing the behaviour of deformed bodies, e.g. stress, disloca- tion, and strain; a student also understands the meaning of their universality.	Arial 10pkt., wy- centrowanie
Knowledge	W02	A student has knowledge of simple cases of tensile strength tests concerning rod constructions such as: tension, shearing, bending, and torsion.	
	U01	A student can make simple analyses for simple cases of tensile strength tests such as: tension, shearing, bend- ing, and torsion.	
Skills	U02	A student can make simple analyses as regards deter- mining rod construction dislocations. A student can also calculate reduced stresses and determine critical loads.	
		A student has the ability to assess the usefulness of tensile strength analyses in solving simple engineering issues.	
Social competences K01 A student understands the necessity of continuous improving his/her knowledge as regards the strength of materials.			

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	The fundamentals of the strength of materials, tasks, subject assumptions and sim- plifications. Material models, the classification of construction models. Stress vector and the state of stress at a point. Plane stress analysis – transformation, determining main directions, and Mohr's cir- cle. The dislocation vector. The state of strain at a point – unit elongations, non- dilatational strain, geometric relationships, and main directions. Basic physical structures, soft and high-carbon steel tension diagram. Hooke's law in simple stress. Generalised Hooke's law. The geometry of a rod cross-section – centres of gravity, axial and polar moments of inertia of a cross-section. Main central inertia axes of a cross-section. Internal forces in a rod, the classification of cases of tensile strength tests. Tension – the analysis of dislocation, strains, and stresses; the condition of tensile strength. The cases of statically indeterminable tension, stresses caused by installation errors. Thermal stresses. Torsion of rods with a circular cross-section; the analysis of strains and stresses; maximum stresses and shaft torsion angle, tensile strength condition. Bending, shearing forces and bending moments; the description of beam strains as a result of bending; the analysis of stresses in a bended rod; tensile strength condi- tion. Tangential stresses during bending.

	-
	Beam deflection lines, differential equation of a deflection line.
	Strain energy – dilatational and non-dilatational strain energy.
	Tensile strength hypotheses – the Huber-Misers-Hencky hypothesis; the hypothesis
	of the largest tangential stresses.
	Practical utilisation of tensile strength hypotheses to analyse complex cases of ten-
	sile strength of a rod.
	Rod buckling – Euler's formula; slenderness ratio and limiting slenderness ratio; elas-
	tic and plastic buckling.
	Rod construction strain energy; Maxwell-Betti reciprocal work theorem; determining
	dislocation in rod systems with the Maxwell-Mohr method.
	Thee elements of the thin plate theory: assumptions and basic relationships.
	Stress concentration. Fatigue of materials.
	The analysis of plane stresses – determining main stresses, transformation of the
	state of stress. The analysis of the state of stress.
	Determining centres of gravity as well as axial and polar moments of inertia of a rod
	cross-section. Determining main central inertia axes and main central inertia mo-
	ments.
	Calculating stresses, strains, and dislocations in rods subject to tensions, the condi-
	tion of tensile strength. The cases of statically indeterminable tension.
	Test 1
Classes	Bending of rods with a circular cross-section, maximum stresses and the shaft tor-
	sion angle; the condition of tensile strength.
	The diagrams of shearing forces and bending moments in bonded rods; determining
	stresses in a bonded rod.
	Determining deflection lines of bonded rods.
	The analysis of the selected cases concerning complex tensile strength.
	The analysis of stability of compressed rods.
	Determining dislocations in rod systems with the Maxwell-Mohr method.

METODS OF ASSESSING TEACHING RESULTS

Symbol		Methods		the learning of lect X)	utcomes	
-	Oral exam	Written exam	Test	Project	Statement	Other
W01		Х	Х			
W02		Х	Х			
W03		Х	Х			
U01		Х	Х			
U02		Х	Х			
U03		X	Х			
K01		X	Х			

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Exam	Obtaining at least 50% of the exam points
Classes	Credit with grade	Obtaining at least 50% of test points during the class

STUDENT WORKLOAD

	Balance of ECTS points											
No.	Type of student's activity		Student's workload									Unit
110.			fu	ll-tin	ne		part-time					Onit
1.	1. Participation in the activities		С	Lb	Ρ	0	Lc	С	Lb	Р	0	h
1.		30	20				18	12				
2.	Other (consultation, exam)	4	2				4	2				h
3.	Number of hours of a student's as- sisted work		56 36				<u>.</u>	h				
4.	Number of ECTS credit points which are allocated for assisted work		2,2				1,4				ECTS	
5.	Number of hours of a student's un- assisted work		44			64				h		
6.	Number of ECTS credit points which a student receives for unassisted work		1,8 2,6						ECTS			
7.	Work input connected with practical classes		40			40				h		
8.	Number of ECTS credit points which a student receives for practical classes		1,6			1,6				ECTS		
9.	Total number of hours of a stu- dent's work	100 100					h					
10.	Punkty ECTS za moduł 1 ECTS=25 hours	4							ECTS			

LITERATURE

- 1. Bhaskar K., Varadan T. K. (2022), *Strength of materials. A concise textbook,* Springer International Publishing AG
- Singh D. K. (2021), Strength of materials, Springer Nature Switzerland AG
 Kumar B. R. (2022), Strength of materials, Taylor & Francis Ltd.