MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-305				
Wodule code	part-time studies:	Z-ZIPN1-E-305				
Module name	Fluid Mechanics and Heat Transfer					
Module name in Polish	Mechanika Płynów i Wymiana Ciepła					
Valid from academic year	2019/2020					

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Artur Bartosik, PhD, DSc
Approved by:	

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester III
Initial requirements	No requirements
Examination (YES/NO)	YES
Number of ECTS credit points	4

Method of conducting classes		Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	30	15			
semester	part-time studies:	18	9			

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes
	W01	Knowledge on physical properties of Newtonian and non-Newtonian fluids, and its measurements Knowledge on practical meaning of buoyancy and thrust.	ZIP1_W02
Knowledge	W02	Basic knowledge on fluid motion phenomena and governing equations in fluid mechanics. Facilitating pumppipeline transportation. Basic knowledge on phenomena of heat transfer and their governing equations.	ZIP1_W08
	U01	A student knows place and role of fluid mechanics in technics and has ability to use equilibrium equation of liquids and to calculate simple thrusts.	ZIP1_U01
Skills	A student has ability to use fluid mechanics equations in order to calculate flow rate and friction in any flow field. Students knows how to calculate pipeline characteristics and find best pipeline-machine efficiency. A student has ability to predict simple heat exchange processes.		ZIP1_U14
			ZIP1_U17
Social	K01	K01 A student understand needs of lifelong learning in order to improve skills in fluid mechanics and heat transfer.	
competences	K02	A student has ability to work as a team member in order to solve engineering problems relevant to fluid mechanics and heat transfer.	ZIP1_K04

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	Structure of fluid mechanics; physical properties. Newtonian hypothesis, Newtonian and non-Newtonian fluids. Types of pressure and instruments to its measurements. Pressure and temperature distribution in Earth atmosphere. Hydrostatics – equilibrium equation for liquids Hydrostatic thrust on flat plat and swimming of body Laminar and turbulent flow; Reynolds experiment Continuity equation; Bernoullie equation for ideal fluids Bernoullie equation for real fluid; Darcy-Weisbach equation, Friction factor - Nikuradse graph Pipeline characteristics; Flowing machine characteristics and matching point of both characteristics Heat transfer phenomena - conduction, convection and radiation Conduction – Fourier law; Heat transfer coefficient and its experimental set up.
	Conduction in rectangular and cylindrical geometry – one and several layers Convection – Newtonian equation; heat transfer coefficient and its set up; Convection and conduction through rectangular and cylindrical geometry; Methods of enhancing and depressing the heat transfer Radiation – radiation phenomena; emission and absorption coefficient; Stefana-Boltzmanna and Kirchhoffa law Heat exchangers; fuels; Methods of heat production

	Dhysical properties of fluids
	Physical properties of fluids.
	Application of equilibrium equation to measurements and calculations of pressure.
	Application of continuity and Bernoulliego equations in ideal flows.
Classes	Application of continuity and Bernoulliego equations in real flows;
Classes	Darcy-Weisbach equation - calculation of pipeline characteristics.
	Application of heat transfer equation in simple geometry.
	Application of conduction and convection in engineering.
	Application of conduction, convection and radiation in engineering.

METODS OF ASSESSING TEACHING RESULTS

Symbol		Method	s of checking to	the learning or	utcomes	
	Oral exam	Written exam	Test	Project	Statement	Other
W01		Х	Х			
W02		Х	Х			
U01			X			
U02		Х	Х			
U03		X	X			
K01			X			
K02			Х			

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture Exam		Obtaining a min. 50% correct answers based on the test with closed and open questions.
Classes	Credit with grade	Obtaining a min. 50% from accounting tasks.

STUDENT WORKLOAD

Balance of ECTS points												
No.	Type of student's activity		Student's workload									Unit
INO.			fu	III-tin	ne		part-time					Onit
1.	Participation in the activities		С	Lb	Р	0	Lc	С	Lb	Р	0	h
١.	Tarticipation in the activities	30	15				18	9				11
2.	Other (consultation, exam)	4	2				4	2				h
3.	Number of hours of a student's assisted work		51 33					h				
4.	Number of ECTS credit points which are allocated for assisted work		2,0 1,3						ECTS			
5.	Number of hours of a student's unassisted work		49			67				h		
6.	Number of ECTS credit points which a student receives for unassisted work		2,0 2,7					ECTS				
7.	Work input connected with practical classes		33			33				h		
8.	Number of ECTS credit points which a student receives for practical classes	1,3			1,3					ECTS		
9.	Total number of hours of a student's work	100 100					h					
10.	Punkty ECTS za moduł 1 ECTS=25 hours					4	4					ECTS

LITERATURE

- Wright T., Gerhart P.M. (2010), Fluid machinery, application, selection, and design, 2nd Edition, Tylor & Francis Gr., London.
 Heinz Bloch (2020), Fluid Machinery. Life Extension of Pumps, Gas Compressors and Drivers, Editor: De Gruyter.