

# MODULE DESCRIPTION

| Module code              | full-time studies: | Z-ZIP1-E-304            |             |  |  |  |  |
|--------------------------|--------------------|-------------------------|-------------|--|--|--|--|
|                          | part-time studies: | Z-ZIPN1-E-304           | (IPN1-E-304 |  |  |  |  |
| Module name              | Mechanics for Engi | Mechanics for Engineers |             |  |  |  |  |
| Module name in Polish    | Mechanika technica | Mechanika techniczna    |             |  |  |  |  |
| Valid from academic year | 2019/2020          |                         |             |  |  |  |  |

### MODULE PLACEMENT IN THE SYLLABUS

| Field of study                        | MANAGEMENT AND PRODUCTION ENGINEERING |
|---------------------------------------|---------------------------------------|
| Level of education                    | 1st degree                            |
| Studies profile                       | General                               |
| Form and method of conducting classes | Full-time and Part-time               |
| Specialisation                        | All                                   |
| Unit conducting the module            | Department of Production Engineering  |
| Module co-ordinator                   | Dariusz Bojczuk, PhD, DSc             |
| Approved by:                          |                                       |

#### **MODULE OVERVIEW**

| Type of subject / group of subjects         | Major           |
|---------------------------------------------|-----------------|
| Module status                               | Compulsory      |
| Language of conducting classes              | English         |
| Module placement in the syllabus - semester | Semester III    |
| Initial requirements                        | No requirements |
| Examination (YES/NO)                        | NO              |
| Number of ECTS credit points                | 2               |

| Method of conducting classes |                    | Lecture | Classes | Laborato-<br>ry | Project | Other |
|------------------------------|--------------------|---------|---------|-----------------|---------|-------|
| Per                          | full-time studies: | 15      | 15      |                 |         |       |
| semester                     | part-time studies: | 9       | 9       |                 |         |       |

| Category           | Symbol                                                                                           | Learning outcomes                                                                                                                             | Assignations to<br>the directional<br>learning out-<br>comes |
|--------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                    | W01                                                                                              | A student is knowledgeable about formulating and ana-<br>lysing the conditions of equilibrium of force systems as<br>well as their reduction. | ZIP1_W02                                                     |
| Knowledge          | W02                                                                                              | ZIP1_W02                                                                                                                                      |                                                              |
|                    | W03                                                                                              | ZIP1_W02                                                                                                                                      |                                                              |
|                    | U01                                                                                              | A student is able to conduct simple static analyses in-<br>cluding balances of force and their reduction.                                     | ZIP1_U17                                                     |
| Skills             | U02                                                                                              | A student is able to conduct simple static analyses in-<br>cluding sliding friction and rolling resistance.                                   | ZIP1_U17                                                     |
| SKIIIS             | U03 A student is able to determine the setting of a centre of gravity, flat surfaces, and lines. |                                                                                                                                               | ZIP1_U17                                                     |
|                    | U04                                                                                              | ZIP1_U19                                                                                                                                      |                                                              |
| Social competences | K01                                                                                              | A student understands the need of continuous improve-<br>ment of his/her knowledge from the field of mechanics<br>for engineers.              | ZIP1_K01                                                     |

## TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

## **TEACHING CONTENTS**

| Method of<br>conducting<br>classes | Teaching contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                            | General knowledge, elements of vector calculus, basic notions of mechanics. The<br>laws and axioms of statics. The moment of a force about the axis, and a pair of forc-<br>es.<br>Bonds and the rules of releasing from bonds. Reducing a given balance of forces to a<br>point, main vector as well as main moment, and balanced static sets. The conditions<br>of equilibrium. The classification of types of balance of forces.<br>Concurrent coplanar force system – equilibrium conditions, examples.<br>Arbitrary coplanar force system – reduction of a system to a resultant (reduction con-<br>dition), central axis equation, and continuous load – reduction to a resultant<br>Arbitrary coplanar force system – conditions of equilibrium, examples of analysing<br>simple and complex systems<br>Sliding friction, developed and undeveloped friction, friction angle, cone of static fric-<br>tion, examples.<br>Journal friction.<br>Band friction – developed friction relation, examples.<br>Rolling resistance, rolling condition.<br>Parallel force system – reduction of a system to a resultant. Gravity and mass centres<br>– integral and total formulas.<br>Examples of determining centres of gravity for flat surfaces and lines.<br>Spatial force system – reduction of a system to a wrench, reduction invariants, and<br>cases of reduction.<br>Spatial concurrent force system – equilibrium conditions, constraints, examples.<br>Spatial arbitrary force system – equilibrium conditions, constraints, examples. |

|         | Revision of a vector calculus. Calculating the moment of a force about a point and axis.                                          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|
|         | Releasing from bonds, formulating the conditions of equilibrium, and determining the reaction – concurrent coplanar force system. |
| Classes | Releasing from bonds, formulating the conditions of equilibrium, and determining the reaction – arbitrary coplanar force system.  |
|         | Analysing problems as regards sliding friction.                                                                                   |
|         | Analysing problems regarding sliding friction, band friction, and rolling resistance                                              |
|         | Determining centres of gravity of solids, flat surfaces, and lines.                                                               |
|         | Releasing from bands, formulating the conditions of equilibrium, and determining the                                              |
|         | reaction – spatial concurrent force system and spatial concurrent force system.                                                   |

## METODS OF ASSESSING TEACHING RESULTS

| Symbol |           | Methods      | of checking<br>(se | the learning of<br>lect X) | utcomes   |       |
|--------|-----------|--------------|--------------------|----------------------------|-----------|-------|
| -      | Oral exam | Written exam | Test               | Project                    | Statement | Other |
| W01    |           |              | Х                  |                            |           |       |
| W02    |           |              | Х                  |                            |           |       |
| W03    |           |              | Х                  |                            |           |       |
| U01    |           |              | Х                  |                            |           |       |
| U02    |           |              | Х                  |                            |           |       |
| U03    |           |              | Х                  |                            |           |       |
| U04    |           |              | Х                  |                            |           |       |
| K01    |           |              | Х                  |                            |           |       |

## FORM AND CONDITIONS OF PASSING

| Form of<br>classes | Form of credit    | Passing conditions                                            |
|--------------------|-------------------|---------------------------------------------------------------|
| Lecture            | Credit with grade | Obtaining at least 50% of the test points in the last lecture |
| Classes            | Credit with grade | Obtaining at least 50% of test points during the class        |

#### STUDENT WORKLOAD

|     | Balance of ECTS points                                                            |                    |     |        |     |     |           |   |      |      |      |      |
|-----|-----------------------------------------------------------------------------------|--------------------|-----|--------|-----|-----|-----------|---|------|------|------|------|
| No. | Type of student's activity                                                        | Student's workload |     |        |     |     |           |   |      |      | Unit |      |
| NO. |                                                                                   |                    | fu  | II-tin | ne  |     | part-time |   |      |      |      | Onit |
| 1.  | 1. Participation in the activities                                                |                    | С   | Lb     | Ρ   | 0   | Lc        | С | Lb   | Ρ    | 0    | h    |
|     |                                                                                   | 15                 | 15  |        |     |     | 9         | 9 |      |      |      |      |
| 2.  | Other (consultation, exam)                                                        | 2                  | 2   |        |     |     | 2         | 2 |      |      |      | h    |
| 3.  | Number of hours of a student's as-<br>sisted work                                 |                    | 34  |        |     | 22  |           |   |      | h    |      |      |
| 4.  | Number of ECTS credit points which are allocated for assisted work                | 1,4                |     |        | 0,9 |     |           |   | ECTS |      |      |      |
| 5.  | Number of hours of a student's un-<br>assisted work                               | 16                 |     |        | 28  |     |           |   | h    |      |      |      |
| 6.  | Number of ECTS credit points which<br>a student receives for unassisted<br>work   |                    | 0,6 |        |     | 1,1 |           |   |      | ECTS |      |      |
| 7.  | Work input connected with practical classes                                       |                    |     | 25     |     |     | 25        |   |      |      |      | h    |
| 8.  | Number of ECTS credit points which<br>a student receives for practical<br>classes | 1,0                |     |        | 1,0 |     |           |   | ECTS |      |      |      |
| 9.  | Total number of hours of a stu-<br>dent's work                                    | 50 50              |     |        |     |     | h         |   |      |      |      |      |
| 10. | Punkty ECTS za moduł<br>1 ECTS=25 hours                                           | 2                  |     |        |     |     |           |   | ECTS |      |      |      |

#### LITERATURE

- 1. Hendzel Z., Żylski W. (2016), *General mechanics. Statics,* Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów
- 2. Beer F., Johnston Jr., Eisenberg E., Mazurek D. (2009), *Vector mechanics for engineers: statics,* Mc Graw-Hill Science
- 3. Meriam J. L., Kraige G., Bolton J. N. (2019), *Engineering Mechanics: Statics SI Version*, John Wiley and Sons (JL)