

MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-531					
	part-time studies:	Z-ZIPN1-E-531					
Module name	Modeling in Produc	Modeling in Production Engineering					
Module name in Polish	Modelowanie w inż	Modelowanie w inżynierii produkcji					
Valid from academic year	2019/2020						

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	Production and Innovation Management
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Anna Rębosz-Kurdek, PhD
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Specialist subject
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semesetr V
Initial requirements	Differential equations
Examination (YES/NO)	YES
Number of ECTS credit points	3

Method of conducting classes		Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	15		15		
semester	part-time studies:	9		9		

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Assignations to the directional learning out- comes	
	W01	The student has knowledge of the use of mathematical methods to describe real phenomena and processes, knows the basics of modeling using differential equa- tions in technical issues, economics and management, and natural sciences.	ZIP1_W01
Knowledge	W02	The student has knowledge of numerical methods of solving ordinary differential equations.	ZIP1_W01
	W03	The student has basic knowledge in the field of mechan- ics (statics, kinematics, dynamics) and the strength of materials necessary to solve engineering problems re- lated to production engineering.	ZIP1_W02
	W04	The student has a basic knowledge of economic phe- nomena, especially related to production engineering.	ZIP1_W10
	U01	The student is able to use mathematical tools, including differential equations, to describe physical, natural and economic processes.	ZIP1_U14
Skills	kills U02 The student is able to use the numerical methods im- plemented in mathematical calculation programs (Mathcad) to solve ordinary differential equations and is able to evaluate the usefulness of the methods used.		ZIP1_U14 ZIP1_U19
	U03	The student is able to prepare a report presenting the results of the performed task.	ZIP1_U03
Social competences K01		The student understands the need to constantly sup- plement knowledge in the area of computer modeling and simulation in the field of production engineering.	ZIP1_K01

TEACHING CONTENTS

Method of conducting classes	Teaching contents							
Lecture	The essence of modeling. Modeling in research. Importance of simulation models. The use of mathematical tools in building models. Computer simulation. The meaning of differential equations. Numerical methods of solving ordinary differ- ential equations. The problem of accuracy of solutions. Examples of models - differential models in life sciences, in economics and manage- ment, in mechanical and electrical systems.							
Laboratory	Introduction to the Mathcad program - Basic information about the purpose of the program, how to use it. Determination of zeros of functions. Solving linear and non- linear systems of equations. Methods of solving equations and systems of ordinary differential equations. Graphical presentation of the results. Construction and analysis of differential models found in natural sciences. Construction and analysis of differential models found in economics and manage- ment. Construction and analysis of differential models found in mechanical and electrical systems.							

Symbol	Methods of checking the learning outcomes (select X)									
	Oral exam	Written exam	Test	Project	Statement	Other				
W01		Х	Х		Х	Х				
W02		Х	Х		Х	Х				
W03		Х	Х		Х	Х				
W04		X	Х		Х	Х				
U01		Х	Х		Х	Х				
U02		Х	Х		Х	Х				
U03					Х					
K01		X	Х			Х				

METODS OF ASSESSING TEACHING RESULTS

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Exam	Obtaining at least 50% of the exam points in the form of a test in the last lecture class. Students who obtain at least a good plus grade in laboratory classes and participate in lectures are eligible for exemption from taking the final exam.
Laboratory	Credit with grade	Obtaining at least 50% of the points available: total for inde- pendent work (on selected laboratory classes), report on selected classes and a test (on the last laboratory classes).

STUDENT WORKLOAD

Balance of ECTS points												
No.	Type of student's activity		Student's workload								Unit	
NO.			fu	ll-tin	ne		part-time					Unit
1.	1. Participation in the activities		С	Lb	Ρ	0	Lc	С	Lb	Р	0	h
		15		15			9		9			
2.	Other (consultation, exam)	4		2			4		2			h
3.	Number of hours of a student's as- sisted work		36			24					h	
4.	Number of ECTS credit points which are allocated for assisted work		1,4			1,0					ECTS	
5.	Number of hours of a student's un- assisted work			39			51					h
6.	Number of ECTS credit points which a student receives for unassisted work		1,6			2,0					ECTS	
7.	Work input connected with practical classes		38		38					h		
8.	Number of ECTS credit points which a student receives for practical classes		1,5			1,5					ECTS	
9.	Total number of hours of a stu- dent's work	75 75				h						
10.	Punkty ECTS za moduł 1 ECTS=25 hours	3				ECTS						

LITERATURE

- 1. Bird J., Ross C. (2019), *Mechanical Engineering Principles (fourth edition)*, Taylor & Francis Ltd.
- 2. Brauer F., Kribs Ch. (2015), *Dynamical systems for biological modeling: An Introduction (Advances in applied mathematics)*, Chapman and Hall/CRC.
- 3. Maxfield B. (2009), *Essential Mathcad for Engineering, Science and Math (second edition)*, Academic Press Inc.
- 4. Mathcad Users Guide (compatible with the used program version).