

# **MODULE DESCRIPTION**

| Madula aada              | full-time studies:             | Z-ZIP1-E-522  |  |  |  |  |
|--------------------------|--------------------------------|---------------|--|--|--|--|
|                          | part-time studies:             | Z-ZIPN1-E-522 |  |  |  |  |
| Module name              | Algorithms and Data Structures |               |  |  |  |  |
| Module name in Polish    | Algorytmy i struktury danych   |               |  |  |  |  |
| Valid from academic year | 2019/2020                      |               |  |  |  |  |

### MODULE PLACEMENT IN THE SYLLABUS

| Field of study                        | MANAGEMENT AND PRODUCTION ENGINEERING         |
|---------------------------------------|-----------------------------------------------|
| Level of education                    | 1st degree                                    |
| Studies profile                       | General                                       |
| Form and method of conducting classes | Full-time and Part-time                       |
| Specialisation                        | Computer Science for Management and Modelling |
| Unit conducting the module            | Department of Computer Science Technologies   |
| Module co-ordinator                   | Marcin Detka, PhD                             |
| Approved by:                          | Dariusz Bojczuk, PhD, DSc                     |

#### **MODULE OVERVIEW**

| Type of subject / group of subjects         | Specialist subject                            |
|---------------------------------------------|-----------------------------------------------|
| Module status                               | Compulsory                                    |
| Language of conducting classes              | English                                       |
| Module placement in the syllabus - semester | Semesetr V                                    |
| Initial requirements                        | Fundamentals of Computer Science<br>Databases |
| Examination (YES/NO)                        | NO                                            |
| Number of ECTS credit points                | 2                                             |

| Method of c | onducting classes  | Lecture | Classes | Laborato-<br>ry | Project | Other |
|-------------|--------------------|---------|---------|-----------------|---------|-------|
| Per         | full-time studies: | 15      |         | 15              |         |       |
| semester    | part-time studies: | 9       |         | 9               |         |       |

# TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

| Category           | Category Symbol Learning outcomes                                                                                  |                                                                                                                                                                                                                         |                                  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Knowlodge          | W01                                                                                                                | A student knows the methods of solving problems of an algorithmic nature, including computational. The student knows the basic data structures and their properties in the context of creating and building algorithms. | ZIP1 _W04<br>ZIP1 _W05           |  |  |  |
| Knowledge          | W02                                                                                                                | A student knows the rules for creating sequence algo-<br>rithms and the student understands the principle of re-<br>cursion and knows the advantages and risks of this<br>method.                                       | ZIP1 _W04<br>ZIP1 _W05           |  |  |  |
| Skills             | U01                                                                                                                | A student has the capacity to select algorithms and data<br>structures depending on the type and complexity of the<br>problem. The student has the ability to select a method<br>suitable for a computational problem.  | ZIP1_U07<br>ZIP1_U14<br>ZIP1_U19 |  |  |  |
|                    | U02 A student is able to formulate algorithms in a program<br>ming language and select appropriate data structures |                                                                                                                                                                                                                         | ZIP1_U07<br>ZIP1_U14<br>ZIP1_U19 |  |  |  |
| Social competences | K01                                                                                                                | He can supplement and improve the acquired knowledge and skills in the field of data structures and algorithms operating on these structures.                                                                           | ZIP1_K01                         |  |  |  |

# **TEACHING CONTENTS**

| Method of<br>conducting<br>classes | Teaching contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                            | Basic principles of algorithm analysis: correctness, computational complexity of the<br>algorithm: pessimistic, expected.<br>Recursive algorithms. Notation of recursive algorithms in a programming language.<br>Threats of recursive solutions. Recursion as hidden memory. Derecursivation.<br>Numerical algorithms: numerical integration algorithms, numerical differentiation,<br>solving nonlinear equations, solving systems of equations<br>Basic data structures, stacks, lists, queues<br>Sorting algorithms: sort by comparison (InsertionSort, QuickSort, MergeSort), simple<br>priority queues: HeapSort binary heaps, positional sort, the complexity of the sort<br>problem<br>Search algorithms: linear search, binary search, hashing<br>Text searching, brute-force algorithms, K-M-P algorithm, Boyer and Moore algorithm,<br>Rabin and Karp algorithm<br>Advanced programming techniques: dynamic programming, greedy algorithms |

| Laboratory | Notation of algorithms in different notations. Implementation in selected programming<br>languages. Assessment of the correctness and computational complexity of algo-<br>rithms.<br>Implementation of recursive algorithms, incl. factorial, Fibonacci sequence, Euclid's<br>algorithm, Hanoi towers others. Defining solutions to problems using recursion.<br>Tracking recursive calls. Derecursivation of algorithms.<br>Implementation of selected numerical algorithms. Assessment of the convergence of<br>algorithms and the accuracy of calculations. Defining solutions to problems with the<br>use of numerical algorithms<br>Implementation of sorting algorithms. Generating test sets for algorithms. Measure-<br>ment of algorithm execution time for various test sets.<br>Implementation of selected searching algorithms. Comparison of the effectiveness of<br>individual approaches to the search problem.<br>Implementation and testing of text search algorithms. Assessment of the effective-<br>ness of text search algorithms.<br>Implementation of dynamic and greedy algorithms for selected problems, incl. the<br>problem of cutting the rod, the knapsack problem and others. Assessment of the ef-<br>fectiveness of selected solutions |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## METODS OF ASSESSING TEACHING RESULTS

| Symbol | Methods of checking the learning outcomes<br>(select X) |              |      |         |           |       |  |
|--------|---------------------------------------------------------|--------------|------|---------|-----------|-------|--|
|        | Oral exam                                               | Written exam | Test | Project | Statement | Other |  |
| W01    |                                                         |              | Х    |         | Х         |       |  |
| W02    |                                                         |              | Х    |         | Х         |       |  |
| U01    |                                                         |              | Х    |         | Х         |       |  |
| U02    |                                                         |              | Х    |         | Х         |       |  |
| K01    |                                                         |              | Х    |         | Х         |       |  |

# FORM AND CONDITIONS OF PASSING

| Form of<br>classes | Form of credit    | Passing conditions                                                                                                                                                                                                                                  |
|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture            | Credit with grade | Obtaining 50% of points from a written final thesis, the scope of which applies to both lectures and laboratories.                                                                                                                                  |
| Laboratory         | Credit with grade | A student scores points for activity in laboratories, for the preparation of reports to selected laboratories (according to the instructor's indications) and for two practical tests at computers. The condition for passing is 50% of the points. |

#### STUDENT WORKLOAD

| Balance of ECTS points |                                                                                   |         |                    |        |    |   |           |      |    |   |   |      |
|------------------------|-----------------------------------------------------------------------------------|---------|--------------------|--------|----|---|-----------|------|----|---|---|------|
| No                     | Type of student's activity                                                        |         | Student's workload |        |    |   |           |      |    |   |   | Unit |
| NO.                    | Type of student's activity                                                        |         | fu                 | II-tin | ne |   | part-time |      |    |   |   | Onit |
| 1                      | 1 Participation in the activities                                                 |         | С                  | Lb     | Р  | 0 | Lc        | С    | Lb | Р | 0 | h    |
|                        |                                                                                   | 15      |                    | 15     |    |   | 9         |      | 9  |   |   |      |
| 2.                     | Other (consultation, exam)                                                        | 2       |                    | 2      |    |   | 2         |      | 2  |   |   | h    |
| 3.                     | Number of hours of a student's as-<br>sisted work                                 |         | 34 22              |        |    |   |           |      | h  |   |   |      |
| 4.                     | Number of ECTS credit points which are allocated for assisted work                |         | 1,4                |        |    |   |           | 0,9  |    |   |   | ECTS |
| 5.                     | Number of hours of a student's un-<br>assisted work                               |         | 16                 |        |    |   |           | 28   |    |   |   | h    |
| 6.                     | Number of ECTS credit points which<br>a student receives for unassisted<br>work   | 0,6 1,1 |                    |        |    |   |           | ECTS |    |   |   |      |
| 7.                     | Work input connected with practical classes                                       |         | 25 25              |        |    |   |           | h    |    |   |   |      |
| 8.                     | Number of ECTS credit points which<br>a student receives for practical<br>classes |         | 1,0 1,0            |        |    |   |           | ECTS |    |   |   |      |
| 9.                     | Total number of hours of a stu-<br>dent's work                                    | 50 50   |                    |        |    |   | h         |      |    |   |   |      |
| 10.                    | Punkty ECTS za moduł<br>1 ECTS=25 hours                                           | 2       |                    |        |    |   |           | ECTS |    |   |   |      |

#### LITERATURE

- 1. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. (2022), Introduction to Algorithms, 4th edition, The MIT Press (https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MIT
- .Press.9780262046305.EBooksWorld.ir.pdf)
- Cormen T. H. (2013), Algorithms Unlocked, The MIT Press.
  Wengrow J. (2020), A Common-Sense Guide to Data Structures and Algorithms: Level Up Your Core Programming Skills, 2nd edition, O'Reilly Media.