

MODULE DESCRIPTION

Madula aada	full-time studies:	Z-ZIP1-E-521					
	part-time studies:	Z-ZIPN1-E-521					
Module name	Relational Databases D	Relational Databases Design					
Module name in Polish	Projektowanie relacyjny	ych baz danych					
Valid from academic year	2019/2020						

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	Computer Science for Management and Modelling
Unit conducting the module	Department of Computer Science Technologies
Module co-ordinator	Marcin Detka, PhD
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Specialist subject
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semesetr V
Initial requirements	Information Technologies Fundamentals of Computer Science Databases
Examination (YES/NO)	YES
Number of ECTS credit points	3

Method of c	onducting classes	Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	15		15		
semester	part-time studies:	9		9		

Category	Assignations to the directional learning out- comes			
	W01	A student has knowledge of the database design and normalization process.	ZIP1_U04 ZIP1_W12	
Knowledge	W02	ZIP1_U04 ZIP1_W12		
	W03	The student has a basic knowledge of the SQL language syntax.	ZIP1_U04 ZIP1_W12	
Skillo	U01	U01 A student is able to present a model of databases with ERD.		
SKIIIS	U02	A student is able to use orders of the SQL language in a selected system of managing databases.	ZIP1_U07 ZIP1_U14	
Social competences	K01	A student is ready to improve and master the acquired knowledge and skills as regards designing databases.	ZIP1_K01	

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	 Relational data model. Attributes, keys and relationships between tables. Database normalization. Levels of analysis when designing relational databases. Conceptual, logical and physical models. Reverse engineering. Data modeling practices. Designing entity relationship diagrams. Consistency conditions and default values. Model application in the form of SQL scripts for creating database tables using DBMS MySQL. Basics of SQL language: (DDL): - defining relational database structures. (DML) - adding, modifying and deleting data. (DQL) - selection, projection, data sorting operations. selecting data from multiple tables. Column and grouping functions. Computed columns. Saving queries as views. The use of subqueries.
Laboratory	 Development of a relational database project. Modelling through different levels of requirements and assumptions analysis. Graphical presentation of the database model. Database standardization. Supports the management of MySQL DBMS. Creating a designer (programmer) environment for relational databases Generating SQL scripts for creating database tables. Attribute restrictions. Structured query language (SQL) - filling database tables. Structured query language (SQL) - selecting and ordering data, displaying information from multiple tables. Structured query language (SQL) - column and grouping functions. Structured query language (SQL) - adding, modifying and deleting data and creating views Database security - creating a permission plan.

Symbol	Methods of checking the learning outcomes (select X)								
	Oral exam	Written exam	Test	Project	Statement	Other			
W01		Х	Х		Х				
W02		Х	Х		Х				
W03		Х	Х		Х				
U01		Х	Х		Х				
U02		Х	Х		Х				
K01		X	X		Х				

METODS OF ASSESSING TEACHING RESULTS

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Exam	Obtaining 50% of points from a written final thesis, the scope of which applies to both lectures and laboratories.
Laboratory	Credit with grade	The student scores points for activity in laboratories, for the preparation of reports to selected laboratories (according to the instructor's indications) and for two practical tests at computers. The condition for passing is 50% of the points.

STUDENT WORKLOAD

Balance of ECTS points												
No	Tupo of student's activity		Student's workload									
NO.	Type of student's activity		fu	II-tin	ne	part-time					Onit	
1	1 Dertisingtion in the activities		С	Lb	Ρ	0	Lc	С	Lb	Р	0	h
		15		15			9		9			
2.	Other (consultation, exam)	2		2			2		2			h
3.	Number of hours of a student's as- sisted work		34					22				
4.	Number of ECTS credit points which are allocated for assisted work		1,4					0,9				
5.	Number of hours of a student's un- assisted work		41					53				
6.	Number of ECTS credit points which a student receives for unassisted work		1,6					2,1				ECTS
7.	Work input connected with practical classes		38				38					h
8.	Number of ECTS credit points which a student receives for practical classes		1,5					1,5			ECTS	
9.	Total number of hours of a stu- dent's work		75					75				h
10.	Punkty ECTS za moduł 1 ECTS=25 hours	3						ECTS				

LITERATURE

- 1. Sharon A., Terry E. (2005), *Beginning Relational Data Modeling*, 2nd Edition, Apress.
- 2. Garcia-Molina H.,, Ullman J., Widom J. (2002), *Database Systems: The Complete Book,* 2nd Edition, Pearson (https://people.inf.elte.hu/miiqaai/elektroModulatorDva.pdf).
- 3. Molinaro A., de Graaf R. (2020), SQL Cookbook: Query Solutions and Techniques for All SQL Users, 2nd edition, O'Reilly Media, Inc.