

MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-505					
	part-time studies:	Z-ZIPN1-E-505					
Module name	Engineering Desig	Engineering Design					
Module name in Polish	Projektowanie inży	Projektowanie inżynierskie					
Valid from academic year	2019/2020						

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Artur Szmidt, PhD
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semesetr V
Initial requirements	Engineering Graphics, Engineering Graphics-SolidWorks Materials Strength
Examination (YES/NO)	NO
Number of ECTS credit points	3

Method of conducting classes		Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	30			15	
semester	part-time studies:	18			9	

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes
Knowledge	W01	A student has advanced knowledge of general principles of engineering design, basic calculation procedures, materials selection, determining boundary conditions for the designed device, and modelling constructions ac- cording to the binding norms and possible optimisation and innovative solutions.	ZIP1_W06 ZIP1_W07
	A student has advanced knowledge conce ciples of work as regards computer support neer's designing work (with reference to C taking simulation as well as optimisation p	A student has advanced knowledge concerning the prin- ciples of work as regards computer support of an engi- neer's designing work (with reference to CAD/CAE), taking simulation as well as optimisation possibilities of the modelled construction into consideration.	ZIP1_W04
Skills	U01	A student can make a functionality analysis of the de- signed simple construction, prepare a calculation pro- cess using basic materials strength analyses, conduct a simulation concerning the condition of the construction in CAD/CAE support packages (as regards an engineer's work).	ZIP1_U14 ZIP1_U17
Skills	U02	A student can prepare technological documentation of an engineering project, provide documentation for it with appropriate reference to the literature on the subject and formulate final conclusion concerning the functioning of the designed device in the production process and dur- ing later exploitation.	ZIP1_U01 ZIP1_U03
Social competences	K01	A student understands the necessity of continuous im- provement of his/her knowledge and skills as regards engineering design, drawing particular attention to learn- ing CAD/CAE computer packages supporting an engi- neer's work;	ZIP1_K01
	K02	A student is also aware of his/her impact on the envi- ronment of the designed devices and the responsibility for their functioning.	ZIP1_K02

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	System conditions of the designing process, General legitimate constructing of me- chanical devices, constructor's tasks. Basic calculation procedures for static and fatigue loads. Materials used in mechanical engineering. Determining the characteristics of materi- als relevant to design. New materials in mechanical constructions. Designed using the SolidWorks program - strength analysis, interpretation of results. The problem of parameterization in designing with the use of SolidWorks software Characteristics of screw, bolt and welded connections. Calculation methods. Structural elements of the shaft. Calculation of shaft strength. Types of bearings, structure, features and advantages. Ways of selecting rolling and sliding bearings. Gear transmissions, belt transmissions. Types of couplings, methods of selecting couplings. Problems of reliability, energy consumption and efficiency of mechanical devices. Evolution of devices of a mechanical nature to mechatronic solutions.

	Analysis of selected mechanical devices and original patents - case study. SolidWorks in designing electrical systems Other applications of the SolidWorks program in engineering design - an overview of the possibilities.
Project	Implementation of the design of a simple screw mechanism in various applications: implementation of the basic elements of the design process from the initial analysis, determination of basic functionalities, basic calculations, structure modeling, prepara- tion of documentation and final analysis, analysis of the structure's environmental impact and determination of critical states of the designed structure, analysis of the simulation of structure behavior in the engineer support packages - SolidWorks and formulation of appropriate conclusions Selection of a structural element, eg a coupling, gear motor for predefined applica- tions from manufactured, ready-made structural elements on the market (selection from many possible variants due to technical and other parameters, with justification given).

METODS OF ASSESSING TEACHING RESULTS

Symbol		Methods		checking the learning outcomes (select X)							
- ,	Oral exam	Written exam	Test	Project	Statement	Other					
W01			Х								
W02			Х								
U01				Х							
U02				Х							
K01				Х		Х					
K02				Х		Х					

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Credit with grade	Obtaining at least 50% of the points in the test carried out in the last lecture classes.
Project	Credit with grade	Obtaining a total of at least 50% of points from two projects.

STUDENT WORKLOAD

Balance of ECTS points												
No.	Type of student's activity		Student's workload								Unit	
NO.	Type of Student's activity		fu	ll-tin	ne			ра	art-tir	ne		onit
1.	. Participation in the activities		С	Lb	Ρ	0	Lc	С	Lb	Ρ	0	h
1.		30			15		18			9		
2.	Other (consultation, exam)	2			2		2			2		h
3.	Number of hours of a student's as- sisted work	49 31					h					
4.	Number of ECTS credit points which are allocated for assisted work		2,0 1,2						ECTS			
5.	Number of hours of a student's un- assisted work	26			44				h			
6.	Number of ECTS credit points which a student receives for unassisted work	1,0 1,8					ECTS					
7.	Work input connected with practical classes		25 25					h				
8.	Number of ECTS credit points which a student receives for practical classes	1,0			1,0				ECTS			
9.	Total number of hours of a stu- dent's work	75			75			h				
10.	Punkty ECTS za moduł 1 ECTS=25 hours		3				ECTS					

LITERATURE

- 1. Golenko A. (2010), Fundamentals of Machine Design. A Coursebook for Polish and Foreign Students, Politechnika Wrocławska, Wrocław (https://www.dbc.wroc.pl/Content/7154/Golenko_Fu ndamentals%20of%20Machine%20Design.pdf
- 2. Jha S., 150 CAD Exercises (https://www.usb.ac.ir/FileStaff/1365_2018-11-17-9-30-19.pdf)
- Narayana K.L, Kannaiah P., Reddy K.V. (2006), *Machine Drawing*, New Age International (P) Ltd.
 Simmons C.H., Phelps N., Maguire D.E (2012), *Manual of Engineering Drawing*, Elsevier Ltd.
- 5. https://www.autodesk.com/solutions/3d-cad-software
- 6. https://www.solidworks.com/