

MODULE DESCRIPTION

Madula aada	full-time studies:	Z-ZIP1-E-502				
	part-time studies:	Z-ZIPN1-E-502				
Module name	Materials Strength - Laboratory					
Module name in Polish	Laboratorium z wytrzymałości materiałów					
Valid from academic year	2019/2020					

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Computer Science Technologies
Module co-ordinator	Paweł Stąpór, PhD
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semesetr V
Initial requirements	Materials Strength
Examination (YES/NO)	NO
Number of ECTS credit points	1

Method of c	onducting classes	Lecture	Classes	Laborato- ry	Project	Other
Per semester	full-time studies:			15		
	part-time studies:			9		

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Category Symbol Learning outcomes		Assignations to the directional learning out- comes
Skille	U01	A student has knowledge as regards creating and ana- lysing engineering projects using programs of the finite elements method.	ZIP1_U17
SKIIIS	OKINS A student is able to utilise the lead U02 ods and computer simulations in ing and assessing manufacturing	A student is able to utilise the learnt mathematical meth- ods and computer simulations in the process of analys- ing and assessing manufacturing decisions.	ZIP1_U19
Social competences	K01	A student understands the necessity and knows the possibilities of continuous self-betterment, which leads to raising his/her professional and personal competences.	ZIP1_K01

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Laboratory	Introduction to the ABAQUS / CAE system. Determination of stresses in a plane truss (building a model with truss elements, discretization, solution, analysis of results). Hooke's law for a uniaxial stress state. Determination of cross-sectional stresses in beam elements (building a model with beam elements, diagrams of bending moments and shear forces). Verification of the stiffness principle by analyzing a geometrically nonlinear task. Static analysis of a disc with a hole, determination of displacements, strain and stress distributions (two-dimensional problem of the linear theory of elasticity, three and four node disc elements). Mises's strength hypothesis for a plane stress state. Illustration of the principles of de Saint Venant and Bernoulli. Introduction of the model of elastic-plastic material to the analysis of stresses in the disc (incremental analysis). Parameters of the elastic-plastic model: yield point, plas- tic strain. Critical load and buckling modes of flat frame members. Numerical verification of Euler's formula for the critical force.

METODS OF ASSESSING TEACHING RESULTS

Symbol	Methods of checking the learning outcomes (select X)								
	Oral exam	Written exam	Test	Project Statement O					
U01			Х						
U02			Х						
K01						Х			

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Laboratory	Credit with grade	Obtaining at least 50% of test points during the class

STUDENT WORKLOAD

Balance of ECTS points												
No	Type of student's activity		Student's workload									
NO.			full-time					ра	rt-tir	ne		Onit
1	1 Participation in the activities		С	Lb	Р	0	Lc	С	Lb	Р	0	h
				15					9			
2.	Other (consultation, exam)			2					2			h
3.	Number of hours of a student's as- sisted work		17					h				
4.	Number of ECTS credit points which are allocated for assisted work		0,7				0,4					ECTS
5.	Number of hours of a student's un- assisted work		8				14					h
6.	Number of ECTS credit points which a student receives for unassisted work		0,3					0,6				ECTS
7.	Work input connected with practical classes		25			25					h	
8.	Number of ECTS credit points which a student receives for practical classes		1,0				1,0					ECTS
9.	Total number of hours of a stu- dent's work		25 25				25			h		
10.	Punkty ECTS za moduł 1 ECTS=25 hours	1						ECTS				

LITERATURE

- Dassault Systemes Simulia Inc., Abaqus Analysis User's Guide, USA, 2022.
 Lee R. (2019), ABAQUS for Engineers: A Practical Tutorial Book, Independently published.
- 3. Lodder M. (2022), Strength of Materials, Springer International Publishing AG.