

MODULE DESCRIPTION

Madula aada	full-time studies:	Z-ZIP1-E-402
	part-time studies:	Z-ZIPN1-E-402
Module name	Mechanics	
Module name in Polish	Mechanika	
Valid from academic year	2019/2020	

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Aleksandra Kumor-Sulerz, PhD
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester IV
Initial requirements	Calculus I, Calculus II
Examination (YES/NO)	NO
Number of ECTS credit points	2

Method of c	onducting classes	Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	15	15			
semester	part-time studies:	9	9			

Category	Symbol	Learning outcomes Assignatio			
Knowlodge	W01	A student has knowledge of describing the motion of a point and a body in terms of kinetics and dynamics by applying mathematical methods (differentiation of func- tions and differential equations).	ZIP1_W01		
Knowledge	W02	ZIP1_W02			
	U01	A student is capable of doing simple analyses as re- gards kinematics and dynamics of the motion of a point and a body.	ZIP1_U01		
Skills	U02	A student can perform simple analyses basing on ener- gy dependencies.	ZIP1_U02		
	U03	A student has the ability of assessing the usefulness of the methods as regards analysing motion and energy methods in solving simple engineering issues.	ZIP1_U03		
Social competences	K01	A student understands the need of constant improve- ment of his/her knowledge from the field of mechanics.	ZIP1_K01		

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	The motion of a point, the methods of describing the motion of a point. Velocity and acceleration in the motion of a point. The dynamics of a point, differentiation of the equations of a point. The motion of a rigid body, classification. Translatory motion, rotational motion, angular velocity, and angular acceleration. The velocity of points in a body in rotational motion, gears. The dynamics of a rotational motion, inertial forces, dynamic reactions, and balanc- ing. The work by a force variable, power, kinetic energy of a point and a body, potential energy, and energy principles.
Classes	The motion of a point, the kinematics of a point. The dynamics of a point, integrating the equations of motion. Translatory motion of a body, , kinematics and dynamics Rotational motion of a body – gears. The dynamics of motion of a rigid body. Work, power, and energy. The principles of conservation of energy.

Symbol	Methods of checking the learning outcomes (select X)							
	Oral exam	Written exam	Test	Project	Statement	Other		
W01			Х			Х		
W02			Х			Х		
U01			Х			Х		
U02			Х			Х		
U03			X			Х		
K01						Х		

METODS OF ASSESSING TEACHING RESULTS

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Credit with grade	Obtaining at least 50% of final test.
Classes	Credit with grade	Obtaining at least 50% of test points during classes, active participation in classes.

STUDENT WORKLOAD

	Balance of ECTS points											
No	Type of student's activity	Student's wo						kloa	Unit			
INO.	Type of student's activity		fu	III-tin	ne			ра	rt-tir	ne	-	Onit
1	Particination in the activities	Lc	С	Lb	Ρ	0	Lc	С	Lb	Ρ	0	h
1.		15	15				9	9				
2.	Other (consultation, exam)	2	2				2	2				h
3.	Number of hours of a student's as- sisted work	34			22					h		
4.	Number of ECTS credit points which are allocated for assisted work	1,4			0,9				ECTS			
5.	Number of hours of a student's un- assisted work		16			28					h	
6.	Number of ECTS credit points which a student receives for unassisted work	0,6			1,1					ECTS		
7.	Work input connected with practical classes	25			25					h		
8.	Number of ECTS credit points which a student receives for practical classes	1,0			1,0					ECTS		
9.	Total number of hours of a stu- dent's work	50		50 50						h		

10.	Punkty ECTS za moduł 1 ECTS=25 hours	2	ECTS
-----	---	---	------

LITERATURE

- 1. Anderson R.J, (2020), *The Practice of Engineering Dynamics*, Wiley.
- 2. Kurnik W. (2017), *Theoretical Mechanics for Engineers. Lectures*, Oficyna Wydawnicza Politechniki Warszawskiej.
- 3. Meriam J.L., Kraige L.G.; Bolton J.N. (2020), *Engineering Mechanics*, 9th Edition, Global Edition, John Wiley & Sons Inc.
- 4. Rashad Islam M., Monayem H Mazumder A K M, Mahbub A. (2022), *Engineering Dynamics. Fundamentals and Applications*, CRC Press.