

MODULE DESCRIPTION

Madula aada	full-time studies:	Z-ZIP1-E-309				
	part-time studies:	Z-ZIPN1-E-309				
Module name	Techniques of laboratory research					
Module name in Polish	Techniki badań laboratoryjnych					
Valid from academic year	2019/2020					

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Krzysztof Dubaj, MSc
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester III
Initial requirements	No requirements
Examination (YES/NO)	NO
Number of ECTS credit points	2

Method of c	onducting classes	Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:			30		
semester	part-time studies:			18		

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes
	W01	A student knows the statistical methods necessary for the processing and analysis of independently collected measurement data and basic engineering quantities.	ZIP1_W01
Knowledge	W02	A student has engineering knowledge necessary to use experimental data to calculate basic flow quantities, such as: pressure, flow rate, average fluid velocity, tem- perature.	ZIP1_W02
Kilowieuge	W03 A student knows the physical particular emphasis on units re how to convert them and use the needs of analysis of meas	A student knows the physical units of the SI system, with particular emphasis on units related to flows. He knows how to convert them and use their exponential form for the needs of analysis of measurement results.	ZIP1_W02
	W04	A student has knowledge of collecting, verifying and processing engineering measurement data related to fluid flow.	ZIP1_W06
	 Has the ability to independently plan and perform measurements of basic physical quantities, including obtaining measurement data using data acquisition stations, as well as interpreting the obtained measurement results and drawing conclusions. 		ZIP1_U03
Skills	Skills U02 p	Has the ability to explore data using appropriate com- puter programs and analyze this data and present it in a visual form	ZIP1_U04
	U03	Has knowledge of environmental protection and occupa- tional health and safety to the extent necessary to partic- ipate in experimental research with the use of mechani- cal and electrical devices.	ZIP1_U16
	K01	Understands the need for self-education in solving engi- neering tasks and improving own professional compe- tences	ZIP1_K01
Social competences	K02	Is aware of the importance and impact of the engineer- ing decisions made on the environment.	ZIP1_K02
	K03	K03 Is aware of the impact of his attitude, behavior and commitment on the effect of teamwork in the implemen- tation of a joint project, including an experiment.	

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Laboratory	Laboratory research techniques, health and safety rules, principles of hydraulic sys- tems operation. Getting to know the research functions of the reo-flow laboratory with particular emphasis on the measurement of such physical quantities as pressure and intensity of the flowing fluid and temperature. Performing control and measurement tests verifying the computer reading with the use of a signal source and data acquisition station and visualization of the results. Learning the principles of measuring the pressure difference. Calibration of the dif- ferential pressure transducer, used in future laboratory activities, using a two-arm liquid manometer. Experimental determination of the linear loss factor in a closed conductor with the use of analog-to-digital converters. Experimental determination of the characteristics of the flow installation and the flow machine. Collection of data needed to determine the system operating point.

Experimental determination of the local loss coefficient for a selected flow element
with the use of analog-to-digital converters.
Experimental determination of the linear loss coefficient for two closed pipes of dif-
ferent diameters and made of different materials.
Computer processing of measurement data collected during the experiment, in order
to: verify the computer reading, calibrate the converter, determine the linear and local
loss coefficients and determine the characteristics of the machine and the flow instal-
lation.

METODS OF ASSESSING TEACHING RESULTS

Symbol	Methods of checking the learning outcomes (select X)								
	Oral exam	Written exam	Test	Project	Statement	Other			
W01					Х				
W02			Х		Х				
W03			Х		X				
W04			Х						
U01					Х				
U02					Х				
U03						Х			
K01						Х			
K02						Х			
K03						Х			

FORM AND CONDITIONS OF PASSING

Form of classes Form of credit		Passing conditions					
Laboratory	Credit with grade	Passing all reports and obtaining at least 50% of points from all tests.					

STUDENT WORKLOAD

Balance of ECTS points												
No	Type of student's activity		Student's workload									
NO.	Type of student's activity	full-time					part-time					Onit
1	1 Derticipation in the activities		С	Lb	Ρ	0	Lc	С	Lb	Р	0	h
1.				30					18			
2.	Other (consultation, exam)			2					2			h
3.	Number of hours of a student's as- sisted work		32					20				h
4.	Number of ECTS credit points which are allocated for assisted work		1,3					0,8				ECTS
5.	Number of hours of a student's un- assisted work		18					30				h
6.	Number of ECTS credit points which a student receives for unassisted work		0,7					1,2				ECTS
7.	Work input connected with practical classes		50					50				h
8.	Number of ECTS credit points which a student receives for practical classes		2,0 2,0					2,0		ECTS		
9.	Total number of hours of a stu- dent's work	50 50						h				
10.	Punkty ECTS za moduł 1 ECTS=25 hours	2						ECTS				

LITERATURE

- 1. Anderson D., Tannehill J., Pletcher R. (2020), Computational Fluid Mechanics and Heat Transfer, CRC Press.
- Janna W. (2020), *Introduction to Fluid Mechanics*, Sixth Edition, CRC Press.
 Montgomery D. (2009), *Engineering Statistics*, Student Study Edition 4th Edition, Wiley.