MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-305				
Module code	part-time studies:	Z-ZIPN1-E-305				
Module name	Fluid Mechanics and Heat Transfer					
Module name in Polish	Mechanika Płynów i Wy	miana Ciepła				
Valid from academic year	2019/2020					

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Artur Bartosik, PhD, DSc
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester III
Initial requirements	No requirements
Examination (YES/NO)	YES
Number of ECTS credit points	4

Method of conducting classes		Lecture	Classes	Laborato- ry	Project	Other
Per semester	full-time studies:	30	15			
	part-time studies:	18	9			

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes
Knowledge	W01	A student has knowledge about the physical properties of fluids, the type of fluid motion, heat transfer and the basic equations of fluid mechanics and heat transfer.	ZIP1_W02
Knowledge	W02	ZIP1_W08	
	U01	A student can obtain data from the literature and other sources regarding the physical properties of fluids, flow and thermal properties.	ZIP1_U01
Skills	U02	A student can use equations of fluid mechanics and heat transfer to calculate fluid flow rate, friction losses in flowing fluid and thermal resistance.	ZIP1_U14
	U03	A student can perform a simple analysis of the type of fluid motion and heat flow using proper equations.	ZIP1_U17
Social	K01 A student understands needs of lifelong learning in order to improve skills in fluid mechanics and heat transfer.		ZIP1_K01
competences	K02	A student is ready to work as a team member in order to solve engineering problems relevant to fluid mechanics and heat transfer.	ZIP1_K04

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	 Structure of fluid mechanics; physical properties. Newtonian hypothesis, Newtonian and non-Newtonian fluids. Types of pressure and instruments to its measurements. Pressure and temperature distribution in Earth atmosphere. Hydrostatics – equilibrium equation for liquids. Hydrostatic thrust on flat plat and swimming of body. Laminar and turbulent flow; Reynolds experiment Continuity equation; Bernoullie equation for ideal fluids. Bernoullie equation for real fluid; Darcy-Weisbach equation, Friction factor - Nikuradse graph. Basic concepts of heat transfer. Characteristics of the heat transfer phenomenon: conduction, convection, radiation. Conduction – Fourier law; Heat transfer coefficient and its experimental set up. Conduction – Newtonian equation; heat transfer coefficient and its set up; con-
	 vection and conduction through rectangular and cylindrical geometry; methods of enhancing and depressing the heat transfer. 13. Radiation – radiation phenomena; emission and absorption coefficient; Stefana-Boltzmanna and Kirchhoffa law. 14. Methods of heat production.

	1.	Physical properties of fluids.
	2.	Application of equilibrium equation to measurements and calculations of pressure.
	3.	Application of continuity and Bernoulliego equations in ideal flows.
Classes	4.	Application of continuity and Bernoulliego equations in real flows; Darcy-
Olasses		Weisbach equation - calculation of pipeline characteristics.
	5.	Application of the heat conduction equation in a flat and cylindrical barrier for single- and multi-layer cases.
	6.	Application of the equation of heat conduction and convection for calculations in
		complex heat exchange cases.

METODS OF ASSESSING TEACHING RESULTS

Symbol	Methods of checking the learning outcomes (select X)							
	Oral exam	Written exam	Test	Project	Statement	Other		
W01		Х	Χ					
W02		Х	Х					
U01			Х					
U02		X	Х					
U03		Х	Х					
K01			Х					
K02			Х					

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Exam	Obtaining a min. 50% correct answers based on the test with closed and open questions.
Classes	Credit with grade	Obtaining a min. 50% from accounting tasks.

STUDENT WORKLOAD

	Balance of ECTS points													
No.	Type of student's activity	Student's workload									Unit			
140.	Type of Student's activity		fu	II-tin	ne		part-time					Oilit		
1.	1. Participation in the activities		Portionation in the activities	Lc	С	Lb	Р	0	Lc	С	Lb	Р	0	h
1.	Tarticipation in the activities	30	15				18	9				11		
2.	Other (consultation, exam)	4	2				4	2				h		
3.	Number of hours of a student's assisted work			51 33					h					
4.	Number of ECTS credit points which are allocated for assisted work			2,0			1,3					ECTS		
5.	Number of hours of a student's unassisted work		49			67				h				
6.	Number of ECTS credit points which a student receives for unassisted work			2,0			2,7			ECTS				
7.	Work input connected with practical classes			33					33			h		
8.	Number of ECTS credit points which a student receives for practical classes		1,3 1,3					ECTS						
9.	Total number of hours of a student's work	100 100				h								
10.	Punkty ECTS za moduł 1 ECTS=25 hours					4	4					ECTS		

LITERATURE

- 1. Gerhart A.L., Gerhart P.M., Hochstein J.I. (2021), *Fundamentals of Fluid Mechanics*, 9th Edition, Munson, Young and Okiishi's.
- 2. Kirkup L. (1996), Experimental Methods: An Introduction to the Analysis and Presentation of Data, pp. 216. ISBN 0-471-33579-7. Wiley-VCH.
- 3. Nakayama Y., Boucher R.F. (2002), Introduction to Fluid Mechanics, Butterworth-Heinemann.
- 4. Russeli G. (2020), Fluid Mechanics in SI Units, Editor: Pearson, EAN 9781292247304.