MODULE DESCRIPTION

Module code	full-time studies:	Z-ZIP1-E-304			
	part-time studies: Z-ZIPN1-E-304				
Module name	Mechanics for Engineers				
Module name in Polish	Mechanika techniczna				
Valid from academic year	2019/2020				

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Production Engineering
Module co-ordinator	Dariusz Bojczuk, PhD, DSc
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Major
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester III
Initial requirements	No requirements
Examination (YES/NO)	NO
Number of ECTS credit points	2

Method of conducting classes		Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	15	15			
semester	part-time studies:	9	9			

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes
	W01	A student is knowledgeable about formulating and analysing the conditions of equilibrium of force systems as well as their reduction.	ZIP1_W02
Knowledge	W02	A student has advanced knowledge of taking sliding friction and rolling resistance into consideration as regards statistics.	ZIP1_W02
	W03 A student has advanced knowl	A student has advanced knowledge of centres of gravity and the methods of determining them.	ZIP1_W02
	U01	A student is able to conduct simple static analyses including balances of force and their reduction.	ZIP1_U17
Skills	U02 A student is able to conduct simple static analyses including sliding friction and rolling resistance.		ZIP1_U17
Skills	U03	A student is able to determine the setting of a centre of gravity, flat surfaces, and lines.	ZIP1_U17
	U04 A student has the ability to assess the usefulness of static analyses in solving simple engineering issues.		ZIP1_U19
Social competences	K01	A student recognizes the importance of knowledge from the field of mechanics for engineers in solving engineer- ing problems and understands the need of its continuous improvement.	ZIP1_K01

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	General knowledge, elements of vector calculus, basic notions of mechanics. The laws and axioms of statics. The moment of a force about the axis, and a pair of forces. Bonds and the rules of releasing from bonds. Reducing a given balance of forces to a point, main vector as well as main moment, and balanced static sets. The conditions of equilibrium. The classification of types of balance of forces. Concurrent coplanar force system – equilibrium conditions, examples. Arbitrary coplanar force system – reduction of a system to a resultant (reduction condition), central axis equation, and continuous load – reduction to a resultant Arbitrary coplanar force system – conditions of equilibrium, examples of analysing simple and complex systems Sliding friction, developed and undeveloped friction, friction angle, cone of static friction, examples. Journal friction. Band friction – developed friction relation, examples. Rolling resistance, rolling condition. Parallel force system – reduction of a system to a resultant. Gravity and mass centres – integral and total formulas. Examples of determining centres of gravity for flat surfaces and lines. Spatial force system – reduction of a system to a wrench, reduction invariants, and cases of reduction. Spatial concurrent force system – equilibrium conditions, constraints, examples. Spatial arbitrary force system – equilibrium conditions, constraints, examples.

	Revision of a vector calculus. Calculating the moment of a force about a point and
	axis.
	Releasing from bonds, formulating the conditions of equilibrium, and determining the reaction – concurrent coplanar force system.
	Releasing from bonds, formulating the conditions of equilibrium, and determining the
Classes	reaction – arbitrary coplanar force system.
	Analysing problems as regards sliding friction.
	Analysing problems regarding sliding friction, band friction, and rolling resistance
	Determining centres of gravity of solids, flat surfaces, and lines.
	Releasing from bands, formulating the conditions of equilibrium, and determining the
	reaction – spatial concurrent force system and spatial concurrent force system.

METODS OF ASSESSING TEACHING RESULTS

Symbol		Methods	s of checking t	the learning o	utcomes	Statement Other	
	Oral exam	Written exam	Test	Project	Statement	Other	
W01			Х				
W02			Х				
W03			Х				
U01			Х				
U02			Х				
U03			Х				
U04			Х				
K01			Х				

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Credit with grade	Obtaining at least 50% of the test points in the last lecture
Classes	Credit with grade	Obtaining at least 50% of test points during the class

STUDENT WORKLOAD

Balance of ECTS points												
No.	Type of student's activity	Student's workload									Unit	
INO.	Type of Student's activity		fu	II-tin	ne			pa	rt-tir	ne		Offic
1.	. Participation in the activities		С	Lb	Р	0	Lc	С	Lb	Р	0	h
'.	Tarticipation in the activities	15	15				9	9				11
2.	Other (consultation, exam)	2	2				2	2				h
3.	Number of hours of a student's assisted work			34			22				h	
4.	Number of ECTS credit points which are allocated for assisted work			1,4			0,9				ECTS	
5.	Number of hours of a student's unassisted work		16 28					h				
6.	Number of ECTS credit points which a student receives for unassisted work			0,6			1,1			ECTS		
7.	Work input connected with practical classes			25					25			h
8.	Number of ECTS credit points which a student receives for practical classes		1,0 1,0					ECTS				
9.	Total number of hours of a student's work	50 50						h				
10.	Punkty ECTS za moduł 1 ECTS=25 hours					2	2					ECTS

LITERATURE

- 1. Hendzel Z., Żylski W. (2016), *General mechanics. Statics*, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.
- 2. Beer F., Johnston Jr., Eisenberg E., Mazurek D. (2009), *Vector mechanics for engineers: statics,* Mc Graw-Hill Science.
- 3. Meriam J. L., Kraige G., Bolton J. N. (2019), *Engineering Mechanics: Statics SI Version*, John Wiley and Sons (JL).