

# MODULE DESCRIPTION

| Madula aada              | full-time studies: | Z-ZIP1-E-303b        |  |  |  |  |  |
|--------------------------|--------------------|----------------------|--|--|--|--|--|
| Module code              | part-time studies: | Z-ZIPN1-E-303b       |  |  |  |  |  |
| Module name              | Discrete Mathemati | Discrete Mathematics |  |  |  |  |  |
| Module name in Polish    | Matematyka dyskre  | tna                  |  |  |  |  |  |
| Valid from academic year | 2019/2020          |                      |  |  |  |  |  |

## MODULE PLACEMENT IN THE SYLLABUS

| Field of study                        | MANAGEMENT AND PRODUCTION ENGINEERING |
|---------------------------------------|---------------------------------------|
| Level of education                    | 1st degree                            |
| Studies profile                       | General                               |
| Form and method of conducting classes | Full-time and Part-time               |
| Specialisation                        | All                                   |
| Unit conducting the module            | Department of Mathematics and Physics |
| Module co-ordinator                   | Artur Maciąg, PhD, DSc, ProfTit       |
| Approved by:                          | Dariusz Bojczuk, PhD, DSc             |

## **MODULE OVERVIEW**

| Type of subject / group of subjects         | Basic           |
|---------------------------------------------|-----------------|
| Module status                               | Non-compulsory  |
| Language of conducting classes              | English         |
| Module placement in the syllabus - semester | Semester III    |
| Initial requirements                        | No requirements |
| Examination (YES/NO)                        | NO              |
| Number of ECTS credit points                | 3               |

| Method of conducting classes |                    | Lecture | Classes | Laborato-<br>ry | Project | Other |
|------------------------------|--------------------|---------|---------|-----------------|---------|-------|
| Per                          | full-time studies: | 20      | 15      |                 |         |       |
| semester                     | part-time studies: | 12      | 9       |                 |         |       |

## TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

| Category           |                                                                                                                                        |                                                                                                                                                      |          |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| Knowledge          | W01                                                                                                                                    | A student has the necessary knowledge from the field of discrete mathematics in order to formulate and solve simple tasks in production engineering. | ZIP1_W01 |  |  |  |
|                    | W02                                                                                                                                    | W02 A student knows standard methods with regard to mod-<br>elling and optimisation in production engineering.                                       |          |  |  |  |
| Skills             | U01                                                                                                                                    | A student can apply the learnt methods and theoretical models to formulate and solve tasks in the range of pro-<br>duction engineering.              | ZIP1_U14 |  |  |  |
| Skiis              | A student can, according to a given specification, plan,<br>project and realise a simple process in logistics using<br>proper methods. |                                                                                                                                                      | ZIP1_U19 |  |  |  |
| Social competences | K01                                                                                                                                    | A student understands the need of constant learning and knows the possibilities of improving his/her professional, personal, and social competences. | ZIP1_K01 |  |  |  |

## **TEACHING CONTENTS**

| Method of<br>conducting<br>classes | Teaching contents                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                            | Elements of logic<br>Mathematical induction<br>Recursion<br>Basics of graph theory, Euler paths and cycles, Fleury's algorithm<br>Graphs with weights, the shortest path between vertices<br>Directed graphs<br>Event networks and critical paths<br>Transport networks and maximum flow<br>Tree theory - binary trees, linking trees - algorithms<br>Boolean algebras |
| Classes                            | Elements of logic<br>Mathematical induction, recursion<br>Basics of graph theory, Euler paths and cycles, Fleury's algorithm<br>Graphs with weights, the shortest path between vertices, directed graphs<br>Event networks and critical paths<br>Transport networks and maximum flow<br>Tree theory - binary trees, linking trees - algorithms<br>Boolean algebras     |

## METODS OF ASSESSING TEACHING RESULTS

| Symbol | Methods of checking the learning outcomes (select X) |              |      |         |           |       |  |  |  |
|--------|------------------------------------------------------|--------------|------|---------|-----------|-------|--|--|--|
|        | Oral exam                                            | Written exam | Test | Project | Statement | Other |  |  |  |
| W01    |                                                      |              | Х    |         |           |       |  |  |  |
| W02    |                                                      |              | Х    |         |           |       |  |  |  |
| U01    |                                                      |              | Х    |         |           |       |  |  |  |
| U02    |                                                      |              | Х    |         |           |       |  |  |  |
| K01    |                                                      |              | Х    |         |           |       |  |  |  |

## FORM AND CONDITIONS OF PASSING

| Form of<br>classes | Form of credit Passing conditions |                                                                                                                                                                                                                                                         |  |  |  |  |  |
|--------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Lecture            | Credit with grade                 | Completion of the lecture is based on the completed exer-<br>cises.                                                                                                                                                                                     |  |  |  |  |  |
| Classes            | Credit with grade                 | During the course, students can earn 10 activity points. The test is scored on a scale of 0-90 points. In order to obtain a pass, it is necessary to obtain a total of at least 50% of the points from the colloquiums and activity during the classes. |  |  |  |  |  |

#### STUDENT WORKLOAD

| Balance of ECTS points |                                                                                   |     |                    |        |     |      |           |   |    |      |      |      |
|------------------------|-----------------------------------------------------------------------------------|-----|--------------------|--------|-----|------|-----------|---|----|------|------|------|
| No.                    | Type of student's activity                                                        |     | Student's workload |        |     |      |           |   |    |      | Unit |      |
| NO.                    |                                                                                   |     | fu                 | ll-tin | ne  |      | part-time |   |    |      |      | onit |
| 1.                     | 1. Participation in the activities                                                |     | С                  | Lb     | Ρ   | 0    | Lc        | С | Lb | Р    | 0    | h    |
| 1.                     |                                                                                   | 20  | 15                 |        |     |      | 12        | 9 |    |      |      |      |
| 2.                     | Other (consultation, exam)                                                        | 2   | 2                  |        |     |      | 2         | 2 |    |      |      | h    |
| 3.                     | Number of hours of a student's as-<br>sisted work                                 |     | 39                 |        |     | 25   |           |   |    |      | h    |      |
| 4.                     | Number of ECTS credit points which are allocated for assisted work                | 1,6 |                    |        | 1,0 |      |           |   |    | ECTS |      |      |
| 5.                     | Number of hours of a student's un-<br>assisted work                               | 36  |                    |        | 50  |      |           |   | h  |      |      |      |
| 6.                     | Number of ECTS credit points which<br>a student receives for unassisted<br>work   |     | 1,4                |        | 2,0 |      |           |   |    | ECTS |      |      |
| 7.                     | Work input connected with practical classes                                       | 32  |                    | 32     |     |      |           |   | h  |      |      |      |
| 8.                     | Number of ECTS credit points which<br>a student receives for practical<br>classes | 1,3 |                    |        | 1,3 |      |           |   |    | ECTS |      |      |
| 9.                     | Total number of hours of a stu-<br>dent's work                                    | 75  |                    |        | 75  |      |           |   | h  |      |      |      |
| 10.                    | Punkty ECTS za moduł<br>1 ECTS=25 hours                                           | 3   |                    |        |     | ECTS |           |   |    |      |      |      |

#### LITERATURE

- 1. Levin O. (2022), *Discrete Mathematics: An Open Introduction*, open access: https://discrete.openmathbooks.org/dmoi3/
- 2. Ross K.A., Wright C.R. (1999), Discrete Mathematics, Pearson.
- Epp S.S. (2011), Discrete Mathematics with Applications, open access: https://notesack.files.wordpress.com/2017/07/ebookscluborg\_\_discrete\_mathematics\_with\_applications.pdf