

MODULE DESCRIPTION

Madula codo	full-time studies:	Z-ZIP1-E-202
	part-time studies:	Z-ZIPN1-E-202
Module name	Calculus II	
Module name in Polish	Analiza matematycz	zna ll
Valid from academic year	2019/2020	

MODULE PLACEMENT IN THE SYLLABUS

Field of study	MANAGEMENT AND PRODUCTION ENGINEERING
Level of education	1st degree
Studies profile	General
Form and method of conducting classes	Full-time and Part-time
Specialisation	All
Unit conducting the module	Department of Mathematics and Physics
Module co-ordinator	Leszek Hożejowski, PhD
Approved by:	Dariusz Bojczuk, PhD, DSc

MODULE OVERVIEW

Type of subject / group of subjects	Basic
Module status	Compulsory
Language of conducting classes	English
Module placement in the syllabus - semester	Semester II
Initial requirements	Calculus I
Examination (YES/NO)	YES
Number of ECTS credit points	5

Method of c	onducting classes	Lecture	Classes	Laborato- ry	Project	Other
Per	full-time studies:	30	30			
semester	part-time studies:	18	18			

Category	Symbol	Learning outcomes	Assignations to the directional learning out- comes	
	W01	A student knows antiderivative and single variable inte- gration.	ZIP1_W01	
Knowledge	W02	A student knows differential calculus of two variables and its application to finding extrema.	ZIP1_W01	
	W03	A student knows integration of functions of two variables.	ZIP1_W01	
	U01	A student can use basic techniques of integration (inte- gration by substitution and by parts) and compute defi- nite and indefinite integrals of rational, irrational and trigonometric functions.	ZIP1_U14	
Skills	U02	A student can differentiate functions of two variables and find relative and constrained extrema.	ZIP1_U14	
	U03	ZIP1_U17		
Social competences	K01	He understands the need for continuous training and improving his competences in the field of mathematical methods used to solve typical engineering problems.	ZIP1_K01	
	K02	Is aware of the responsibility for their own work.	ZIP1_K04	

TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS

TEACHING CONTENTS

Method of conducting classes	Teaching contents
Lecture	 Functions of two variables. Domain, contour plan. Partial derivatives of functions of two variables. Generalization for the case of functions of n variables. The total difference and its application to error estimation. Higher order partial derivatives. Local extremum of functions of two variables. Least squares method - obtaining empirical formulas. Weierstrass theorem. Global extremes. Implicit function and its differentiation. The extreme of an implicit function. Conditional extreme of functions of two variables - the method of the indefinite Lagrange multiplier. Application examples. Definition and properties of a double integral. Double integral in the normal range. Change of the order of integration in a double integral. Double integral in polar coordinates. Geometric applications of a double integral (area area, solid volume). The mean value of the function. Applications of the double integral in mechanics. Triple integral in a cuboid. Geometric and physical interpretation. Calculation by conversion to iterated integral.

	Determining and drawing the domain of functions of two variables. Preparation of a contour plan. Calculation of first-order partial derivatives of functions of two and three variables.
	Calculation of partial derivatives of the second order.
	Finding the local extremum of functions of two variables. Obtaining empirical formu- las by the method of least squares with linear or quadratic dependence of two quanti- ties.
	Finding the greatest / smallest value of a given function on a closed and limited set.
Classes	Differentiation of implicit functions. An example of economic application - Calculation of the marginal rate of substitution.
	Determining the conditional extremum. Tasks (problems) leading to the search for the conditional extreme.
	Calculation of a double integral in the normal region by conversion to iterated integral (using different order of integration).
	Calculating the double integral in polar coordinates.
	Calculating the mean value of a function of two variables. Calculation of the column
	Volume bounded by given areas.
	coordinates of the center of gravity, etc.).

METODS OF ASSESSING TEACHING RESULTS

Symbol		Methods	of checking the learning outcomes (select X)							
	Oral exam	Written exam	Test	Project	Statement	Other				
W01		Х	Х							
W02		Х	Х							
W03		Х	Х							
U01		Х	Х							
U02		Х	Х							
U03		Х	Х							
K01						Х				
K02						Х				

FORM AND CONDITIONS OF PASSING

Form of classes	Form of credit	Passing conditions
Lecture	Exam	Obtaining at least 50% of the points.
Classes	Credit with grade	Obtaining at least 50% of the total points of the test (test weights: 0.6 and 0.4, respectively).

STUDENT WORKLOAD

Balance of ECTS points												
No	Type of student's activity		Student's workload									Unit
NO.	Type of student's activity	full-time					part-time					Onit
1	1 Participation in the activities		С	Lb	Р	0	Lc	С	Lb	Ρ	0	h
		30	30				18	18				
2.	Other (consultation, exam)	4	2				4	2				h
3.	Number of hours of a student's as- sisted work		66				42					h
4.	Number of ECTS credit points which are allocated for assisted work		2,6				1,7				ECTS	
5.	Number of hours of a student's un- assisted work		59				83				h	
6.	Number of ECTS credit points which a student receives for unassisted work		2,4					3,3			ECTS	
7.	Work input connected with practical classes		63			63				h		
8.	Number of ECTS credit points which a student receives for practical classes		2,5				2,5			ECTS		
9.	Total number of hours of a stu- dent's work	125 125					h					
10.	Punkty ECTS za moduł 1 ECTS=25 hours	5						ECTS				

LITERATURE

- Hughes-Hallett D. (2008), *Calculus: Single and Multivariable*, Wiley.
 Stewart J. (2016), *Calculus,* Cengage Learning.
- 3. Stewart J., Clegg D.K., Watson S. (2020), Multivariable Calculus, Brooks/Cole Cengage Learning.